SOCI 620: Quantitative methods 2

Logistic regression: adding predictors

- Feb 7 | 1. Adding predictors to logistic regressions
 - 2. Odds (and odds ratios) versus probabilities
 - 3. Transforming posterior distributions
 - 4. Prior predictive simulation in R

Cocaine use among adolescents

$$C_i \sim \operatorname{Bernoulli}(p_i)$$
 $\operatorname{logit}(p_i) = a + \beta G_i$

$$a \sim \text{Norm}(0, 1.5)$$

$$\beta \sim \text{Norm}(0, 0.3) \longrightarrow \text{Where did this prior come from?}$$

Priors in logistic regressions

$$C_i \sim \text{Bernoulli}(p_i)$$

$$logit(p_i) = \alpha + \beta G_i$$

 $a \sim \text{Norm}(0, 1.5)$

Prior predictive simulation

(at minimum grade)

Logistic regression coefficients

$$C_i \sim \text{Bernoulli}(p_i)$$

$$logit(p_i) = a + \beta G_i$$

$$a \sim \text{Norm}(0, 1.5)$$

$$\beta \sim \text{Norm}(0, 0.3)$$

	Mean	90% HPDI
α	-4.59	-5.41 -3.91
β	0.12	0.05 0.20

"The expected probability of having tried cocaine for a student with G_i =0 is: logistic(-4.59) = 0.01 = 1%"

Standardized *G_i* "The expected probability of having tried cocaine for a student in grade 9.54: logistic(-4.59) = 0.01 = 1%"

Logistic regression coefficients

Interpreting B

Odds ratio

$$\exp(\beta) = \frac{\left(\frac{\rho^{G=1}}{1-\rho^{G=1}}\right)}{\left(\frac{\rho^{G=0}}{1-\rho^{G=0}}\right)}$$

$$\frac{\left(\frac{\rho^{G=1}}{1-\rho^{G=0}}\right)}{\left(\frac{\rho^{G=0}}{1-\rho^{G=0}}\right)}$$

$$\log(\frac{\rho}{1-\rho}) = a + \beta G$$

$$\log(\frac{\rho}{1-\rho}) = a + \beta G$$

$$\frac{\rho}{1-\rho} = \exp(a + \beta G)$$

$$\frac{\rho}{1-\rho} = \exp(a) \times \exp(\beta G)$$

"For every unit increase in the covariate, the expected *odds* of the outcome is multiplied by exp(β)"

"For every 1.67 grades a student completes, their expected *odds* of trying cocaine increased by 13% (multiplied by 1.13)"

$$\log it(p) = a + \beta G$$

$$\log \left(\frac{p}{1-p}\right) = a + \beta G$$

$$\frac{p}{1-p} = \exp(a + \beta G)$$

$$\frac{p}{1-p} = \exp(a) \times \exp(\beta G)$$

Odds ratios

Logistic regression coefficients

Alternatives to odds ratios

Cases

"An average 7th grade student has about a 0.83% chance of having tried cocaine, while for an average 12th grader, that probability is about 1.21%"

Posterior visualization

Logistic posteriors

Adding covariates

G_i: Grade in school (standardized)

D_i: Delinquency (standardized)

W_i: White (indicator)

$$C_i \sim ext{Bernoulli}(p_i)$$
 $ext{logit}(p_i) = a + eta_G G_i + eta_D D_i + eta_W W_i$

 $a \sim \text{Norm}(0, 1.5)$

 $eta_G \sim \mathsf{Norm}(0, 0.5)$

 $\beta_D \sim \text{Norm}(0, 0.5)$

 $\beta_W \sim \mathsf{Norm}(0, 0.5)$

	Mean	90% HPDI		
а	-6.26	-7.25 -5	.30	
$oldsymbol{eta}_{G}$	0.18	0.09 0	.27	
$oldsymbol{eta}_D$	0.90	0.77 0	.99	
βw	0.70	0.40 1	.00	

Adding covariates

$C_i \sim Bernoulli(p_i)$		Mean	90%	HPDI
$logit(p_i) = \alpha + \beta_G G_i + \beta_D D_i + \beta_W W_i$	α	-6.26	-7.25	-5.30
$a \sim \text{Norm}(0, 1.5)$	$oldsymbol{eta}_{G}$	0.18	0.09	0.27
$eta_G \sim Norm(0, 0.5)$	$oldsymbol{eta}_D$	0.90	0.77	0.99
$eta_D \sim Norm(0,0.5)$ $eta_W \sim Norm(0,0.5)$	β_W	0.70	0.40	1.00

Interpreting
results using
odds ratios

Each coefficient has an easy-to-calculate (but hard-to-interpret) meaning

exp(a) = 0.0019	The odds of cocaine use for a student in the mean grade, with mean deviance, and who is not white is about 0.0019.
$\exp(\beta_G) = 1.2022$	For each standard deviation increase in grade level, students' odds of having tried cocaine increase by about 20%.
$\exp(\beta_D) = 2.4611$	For each standard deviation increase in deviance score, students' odds of having tried cocaine increase by about 146%.
$\exp(\beta_W) = 2.0164$	White students' odds of having dried cocaine are about 102% higher than non-white students'.

Adding covariates

$C_i \sim Bernoulli(p_i)$		Mean 90% H		HPDI
$logit(p_i) = \alpha + \beta_G G_i + \beta_D D_i + \beta_W W_i$	a	-6.26	-7.25	-5.30
$a \sim Norm(0, 1.5)$	$oldsymbol{eta}_{G}$	0.18	0.09	0.27
$eta_G \sim Norm(0, 0.5)$	$oldsymbol{eta}_{D}$	0.90	0.77	0.99
$eta_{D} \sim Norm(0, 0.5)$ $eta_{W} \sim Norm(0, 0.5)$	β_W	0.70	0.40	1.00

Interpreting results using selected cases

Don't interpret coefficients, but meaningful hypothetical cases in the data

logit-1(
$$\alpha$$
) = 0.0019 The probability of cocaine use for a student in the mean grade, with mean deviance, and who is not white is about 0.0019.

logit-1(α + 2× β_G) = 0.0027 In comparison, an otherwise-identical student whose grade level is two standard deviations above the mean has a probability of cocaine use of about 0.0027

logit-1(α + β_W) = 0.0038 An 'average' white students' probability of having dried cocaine is about 0.0038